123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- /* global TransformStream */
-
- // Worker for E2EE/Insertable streams.
- //
-
- /**
- * Polyfill RTCEncoded(Audio|Video)Frame.getMetadata() (not available in M83, available M84+).
- * The polyfill can not be done on the prototype since its not exposed in workers. Instead,
- * it is done as another transformation to keep it separate.
- */
- function polyFillEncodedFrameMetadata(encodedFrame, controller) {
- if (!encodedFrame.getMetadata) {
- encodedFrame.getMetadata = function() {
- return {
- // TODO: provide a more complete polyfill based on additionalData for video.
- synchronizationSource: this.synchronizationSource,
- contributingSources: this.contributingSources
- };
- };
- }
- controller.enqueue(encodedFrame);
- }
-
- // We use a ringbuffer of keys so we can change them and still decode packets that were
- // encrypted with an old key.
- const keyRingSize = 3;
-
- // We use a 96 bit IV for AES GCM. This is signalled in plain together with the
- // packet. See https://developer.mozilla.org/en-US/docs/Web/API/AesGcmParams
- const ivLength = 12;
-
- // We use a 128 bit key for AES GCM.
- const keyGenParameters = {
- name: 'AES-GCM',
- length: 128
- };
-
- // We copy the first bytes of the VP8 payload unencrypted.
- // For keyframes this is 10 bytes, for non-keyframes (delta) 3. See
- // https://tools.ietf.org/html/rfc6386#section-9.1
- // This allows the bridge to continue detecting keyframes (only one byte needed in the JVB)
- // and is also a bit easier for the VP8 decoder (i.e. it generates funny garbage pictures
- // instead of being unable to decode).
- // This is a bit for show and we might want to reduce to 1 unconditionally in the final version.
- //
- // For audio (where frame.type is not set) we do not encrypt the opus TOC byte:
- // https://tools.ietf.org/html/rfc6716#section-3.1
- const unencryptedBytes = {
- key: 10,
- delta: 3,
- undefined: 1 // frame.type is not set on audio
- };
-
- // Salt used in key derivation
- // FIXME: We currently use the MUC room name for this which has the same lifetime
- // as this worker. While not (pseudo)random as recommended in
- // https://developer.mozilla.org/en-US/docs/Web/API/Pbkdf2Params
- // this is easily available and the same for all participants.
- // We currently do not enforce a minimum length of 16 bytes either.
- let _keySalt;
-
- /**
- * Derives a AES-GCM key from the input using PBKDF2
- * The key length can be configured above and should be either 128 or 256 bits.
- * @param {Uint8Array} keyBytes - Value to derive key from
- * @param {Uint8Array} salt - Salt used in key derivation
- */
- async function deriveKey(keyBytes, salt) {
- // https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/importKey
- const material = await crypto.subtle.importKey('raw', keyBytes,
- 'PBKDF2', false, [ 'deriveBits', 'deriveKey' ]);
-
- // https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/deriveKey#PBKDF2
- return crypto.subtle.deriveKey({
- name: 'PBKDF2',
- salt,
- iterations: 100000,
- hash: 'SHA-256'
- }, material, keyGenParameters, false, [ 'encrypt', 'decrypt' ]);
- }
-
-
- /**
- * Per-participant context holding the cryptographic keys and
- * encode/decode functions
- */
- class Context {
- /**
- * @param {string} id - local muc resourcepart
- */
- constructor(id) {
- // An array (ring) of keys that we use for sending and receiving.
- this._cryptoKeyRing = new Array(keyRingSize);
-
- // A pointer to the currently used key.
- this._currentKeyIndex = -1;
-
- // We keep track of how many frames we have sent per ssrc.
- // Starts with a random offset similar to the RTP sequence number.
- this._sendCounts = new Map();
-
- this._id = id;
- }
-
- /**
- * Derives a per-participant key.
- * @param {Uint8Array} keyBytes - Value to derive key from
- * @param {Uint8Array} salt - Salt used in key derivation
- */
- async deriveKey(keyBytes, salt) {
- const encoder = new TextEncoder();
- const idBytes = encoder.encode(this._id);
-
- // Separate both parts by a null byte to avoid ambiguity attacks.
- const participantSalt = new Uint8Array(salt.byteLength + idBytes.byteLength + 1);
-
- participantSalt.set(salt);
- participantSalt.set(idBytes, salt.byteLength + 1);
-
- return deriveKey(keyBytes, participantSalt);
- }
-
- /**
- * Sets a key and starts using it for encrypting.
- * @param {CryptoKey} key
- * @param {Number} keyIndex
- */
- setKey(key, keyIndex) {
- this._currentKeyIndex = keyIndex % this._cryptoKeyRing.length;
- this._cryptoKeyRing[this._currentKeyIndex] = key;
- }
-
- /**
- * Construct the IV used for AES-GCM and sent (in plain) with the packet similar to
- * https://tools.ietf.org/html/rfc7714#section-8.1
- * It concatenates
- * - the 32 bit synchronization source (SSRC) given on the encoded frame,
- * - the 32 bit rtp timestamp given on the encoded frame,
- * - a send counter that is specific to the SSRC. Starts at a random number.
- * The send counter is essentially the pictureId but we currently have to implement this ourselves.
- * There is no XOR with a salt. Note that this IV leaks the SSRC to the receiver but since this is
- * randomly generated and SFUs may not rewrite this is considered acceptable.
- * The SSRC is used to allow demultiplexing multiple streams with the same key, as described in
- * https://tools.ietf.org/html/rfc3711#section-4.1.1
- * The RTP timestamp is 32 bits and advances by the codec clock rate (90khz for video, 48khz for
- * opus audio) every second. For video it rolls over roughly every 13 hours.
- * The send counter will advance at the frame rate (30fps for video, 50fps for 20ms opus audio)
- * every second. It will take a long time to roll over.
- *
- * See also https://developer.mozilla.org/en-US/docs/Web/API/AesGcmParams
- */
- makeIV(synchronizationSource, timestamp) {
- const iv = new ArrayBuffer(ivLength);
- const ivView = new DataView(iv);
-
- // having to keep our own send count (similar to a picture id) is not ideal.
- if (!this._sendCounts.has(synchronizationSource)) {
- // Initialize with a random offset, similar to the RTP sequence number.
- this._sendCounts.set(synchronizationSource, Math.floor(Math.random() * 0xFFFF));
- }
- const sendCount = this._sendCounts.get(synchronizationSource);
-
- ivView.setUint32(0, synchronizationSource);
- ivView.setUint32(4, timestamp);
- ivView.setUint32(8, sendCount % 0xFFFF);
-
- this._sendCounts.set(synchronizationSource, sendCount + 1);
-
- return iv;
- }
-
- /**
- * Function that will be injected in a stream and will encrypt the given encoded frames.
- *
- * @param {RTCEncodedVideoFrame|RTCEncodedAudioFrame} encodedFrame - Encoded video frame.
- * @param {TransformStreamDefaultController} controller - TransportStreamController.
- *
- * The packet format is described below. One of the design goals was to not require
- * changes to the SFU which for video requires not encrypting the keyframe bit of VP8
- * as SFUs need to detect a keyframe (framemarking or the generic frame descriptor will
- * solve this eventually). This also "hides" that a client is using E2EE a bit.
- *
- * Note that this operates on the full frame, i.e. for VP8 the data described in
- * https://tools.ietf.org/html/rfc6386#section-9.1
- *
- * The VP8 payload descriptor described in
- * https://tools.ietf.org/html/rfc7741#section-4.2
- * is part of the RTP packet and not part of the frame and is not controllable by us.
- * This is fine as the SFU keeps having access to it for routing.
- *
- * The encrypted frame is formed as follows:
- * 1) Leave the first (10, 3, 1) bytes unencrypted, depending on the frame type and kind.
- * 2) Form the GCM IV for the frame as described above.
- * 3) Encrypt the rest of the frame using AES-GCM.
- * 4) Allocate space for the encrypted frame.
- * 5) Copy the unencrypted bytes to the start of the encrypted frame.
- * 6) Append the ciphertext to the encrypted frame.
- * 7) Append the IV.
- * 8) Append a single byte for the key identifier. TODO: we don't need all the bits.
- * 9) Enqueue the encrypted frame for sending.
- */
- encodeFunction(encodedFrame, controller) {
- const keyIndex = this._currentKeyIndex;
-
- if (this._cryptoKeyRing[keyIndex]) {
- const iv = this.makeIV(encodedFrame.getMetadata().synchronizationSource, encodedFrame.timestamp);
-
- return crypto.subtle.encrypt({
- name: 'AES-GCM',
- iv,
- additionalData: new Uint8Array(encodedFrame.data, 0, unencryptedBytes[encodedFrame.type])
- }, this._cryptoKeyRing[keyIndex], new Uint8Array(encodedFrame.data,
- unencryptedBytes[encodedFrame.type]))
- .then(cipherText => {
- const newData = new ArrayBuffer(unencryptedBytes[encodedFrame.type] + cipherText.byteLength
- + iv.byteLength + 1);
- const newUint8 = new Uint8Array(newData);
-
- newUint8.set(
- new Uint8Array(encodedFrame.data, 0, unencryptedBytes[encodedFrame.type])); // copy first bytes.
- newUint8.set(
- new Uint8Array(cipherText), unencryptedBytes[encodedFrame.type]); // add ciphertext.
- newUint8.set(
- new Uint8Array(iv), unencryptedBytes[encodedFrame.type] + cipherText.byteLength); // append IV.
- newUint8[unencryptedBytes[encodedFrame.type] + cipherText.byteLength + ivLength]
- = keyIndex; // set key index.
-
- encodedFrame.data = newData;
-
- return controller.enqueue(encodedFrame);
- }, e => {
- console.error(e);
-
- // We are not enqueuing the frame here on purpose.
- });
- }
-
- /* NOTE WELL:
- * This will send unencrypted data (only protected by DTLS transport encryption) when no key is configured.
- * This is ok for demo purposes but should not be done once this becomes more relied upon.
- */
- controller.enqueue(encodedFrame);
- }
-
- /**
- * Function that will be injected in a stream and will decrypt the given encoded frames.
- *
- * @param {RTCEncodedVideoFrame|RTCEncodedAudioFrame} encodedFrame - Encoded video frame.
- * @param {TransformStreamDefaultController} controller - TransportStreamController.
- *
- * The decrypted frame is formed as follows:
- * 1) Extract the key index from the last byte of the encrypted frame.
- * If there is no key associated with the key index, the frame is enqueued for decoding
- * and these steps terminate.
- * 2) Determine the frame type in order to look up the number of unencrypted header bytes.
- * 2) Extract the 12-byte IV from its position near the end of the packet.
- * Note: the IV is treated as opaque and not reconstructed from the input.
- * 3) Decrypt the encrypted frame content after the unencrypted bytes using AES-GCM.
- * 4) Allocate space for the decrypted frame.
- * 5) Copy the unencrypted bytes from the start of the encrypted frame.
- * 6) Append the plaintext to the decrypted frame.
- * 7) Enqueue the decrypted frame for decoding.
- */
- decodeFunction(encodedFrame, controller) {
- const data = new Uint8Array(encodedFrame.data);
- const keyIndex = data[encodedFrame.data.byteLength - 1];
-
- if (this._cryptoKeyRing[keyIndex]) {
- const iv = new Uint8Array(encodedFrame.data, encodedFrame.data.byteLength - ivLength - 1, ivLength);
- const cipherTextStart = unencryptedBytes[encodedFrame.type];
- const cipherTextLength = encodedFrame.data.byteLength - (unencryptedBytes[encodedFrame.type]
- + ivLength + 1);
-
- return crypto.subtle.decrypt({
- name: 'AES-GCM',
- iv,
- additionalData: new Uint8Array(encodedFrame.data, 0, unencryptedBytes[encodedFrame.type])
- }, this._cryptoKeyRing[keyIndex], new Uint8Array(encodedFrame.data, cipherTextStart, cipherTextLength))
- .then(plainText => {
- const newData = new ArrayBuffer(unencryptedBytes[encodedFrame.type] + plainText.byteLength);
- const newUint8 = new Uint8Array(newData);
-
- newUint8.set(new Uint8Array(encodedFrame.data, 0, unencryptedBytes[encodedFrame.type]));
- newUint8.set(new Uint8Array(plainText), unencryptedBytes[encodedFrame.type]);
-
- encodedFrame.data = newData;
-
- return controller.enqueue(encodedFrame);
- }, e => {
- console.error(e);
-
- // TODO: notify the application about error status.
-
- // TODO: For video we need a better strategy since we do not want to based any
- // non-error frames on a garbage keyframe.
- if (encodedFrame.type === undefined) { // audio, replace with silence.
- // audio, replace with silence.
- const newData = new ArrayBuffer(3);
- const newUint8 = new Uint8Array(newData);
-
- newUint8.set([ 0xd8, 0xff, 0xfe ]); // opus silence frame.
- encodedFrame.data = newData;
- controller.enqueue(encodedFrame);
- }
- });
- } else if (keyIndex >= this._cryptoKeyRing.length && this._cryptoKeyRing[this._currentKeyIndex]) {
- // If we are encrypting but don't have a key for the remote drop the frame.
- // This is a heuristic since we don't know whether a packet is encrypted,
- // do not have a checksum and do not have signaling for whether a remote participant does
- // encrypt or not.
- return;
- }
-
- // TODO: this just passes through to the decoder. Is that ok? If we don't know the key yet
- // we might want to buffer a bit but it is still unclear how to do that (and for how long etc).
- controller.enqueue(encodedFrame);
- }
- }
-
- const contexts = new Map(); // Map participant id => context
-
- onmessage = async event => {
- const { operation } = event.data;
-
- if (operation === 'initialize') {
- _keySalt = event.data.salt;
- } else if (operation === 'encode') {
- const { readableStream, writableStream, participantId } = event.data;
-
- if (!contexts.has(participantId)) {
- contexts.set(participantId, new Context(participantId));
- }
- const context = contexts.get(participantId);
- const transformStream = new TransformStream({
- transform: context.encodeFunction.bind(context)
- });
-
- readableStream
- .pipeThrough(new TransformStream({
- transform: polyFillEncodedFrameMetadata // M83 polyfill.
- }))
- .pipeThrough(transformStream)
- .pipeTo(writableStream);
- } else if (operation === 'decode') {
- const { readableStream, writableStream, participantId } = event.data;
-
- if (!contexts.has(participantId)) {
- contexts.set(participantId, new Context(participantId));
- }
- const context = contexts.get(participantId);
- const transformStream = new TransformStream({
- transform: context.decodeFunction.bind(context)
- });
-
- readableStream
- .pipeThrough(new TransformStream({
- transform: polyFillEncodedFrameMetadata // M83 polyfill.
- }))
- .pipeThrough(transformStream)
- .pipeTo(writableStream);
- } else if (operation === 'setKey') {
- const { participantId, key, keyIndex } = event.data;
-
- if (!contexts.has(participantId)) {
- contexts.set(participantId, new Context(participantId));
- }
- const context = contexts.get(participantId);
-
- if (key) {
- context.setKey(await context.deriveKey(key, _keySalt), keyIndex);
- } else {
- context.setKey(false, keyIndex);
- }
- } else if (operation === 'cleanup') {
- const { participantId } = event.data;
-
- contexts.delete(participantId);
- } else {
- console.error('e2ee worker', operation);
- }
- };
|