123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- /* eslint-disable no-bitwise */
- /* global BigInt */
-
- import { deriveKeys, importKey, ratchet } from './crypto-utils';
-
- // We use a ringbuffer of keys so we can change them and still decode packets that were
- // encrypted with an old key. We use a size of 16 which corresponds to the four bits
- // in the frame trailer.
- const KEYRING_SIZE = 16;
-
- // We copy the first bytes of the VP8 payload unencrypted.
- // For keyframes this is 10 bytes, for non-keyframes (delta) 3. See
- // https://tools.ietf.org/html/rfc6386#section-9.1
- // This allows the bridge to continue detecting keyframes (only one byte needed in the JVB)
- // and is also a bit easier for the VP8 decoder (i.e. it generates funny garbage pictures
- // instead of being unable to decode).
- // This is a bit for show and we might want to reduce to 1 unconditionally in the final version.
- //
- // For audio (where frame.type is not set) we do not encrypt the opus TOC byte:
- // https://tools.ietf.org/html/rfc6716#section-3.1
- const UNENCRYPTED_BYTES = {
- key: 10,
- delta: 3,
- undefined: 1 // frame.type is not set on audio
- };
- const ENCRYPTION_ALGORITHM = 'AES-GCM';
-
- /* We use a 96 bit IV for AES GCM. This is signalled in plain together with the
- packet. See https://developer.mozilla.org/en-US/docs/Web/API/AesGcmParams */
- const IV_LENGTH = 12;
-
- const RATCHET_WINDOW_SIZE = 8;
-
- /**
- * Per-participant context holding the cryptographic keys and
- * encode/decode functions
- */
- export class Context {
- /**
- * @param {Object} options
- */
- constructor({ sharedKey = false } = {}) {
- // An array (ring) of keys that we use for sending and receiving.
- this._cryptoKeyRing = new Array(KEYRING_SIZE);
-
- // A pointer to the currently used key.
- this._currentKeyIndex = -1;
-
- this._sendCounts = new Map();
-
- this._sharedKey = sharedKey;
- }
-
- /**
- * Derives the different subkeys and starts using them for encryption or
- * decryption.
- * @param {Uint8Array|false} key bytes. Pass false to disable.
- * @param {Number} keyIndex
- */
- async setKey(key, keyIndex = -1) {
- let newKey = false;
-
- if (key) {
- if (this._sharedKey) {
- newKey = key;
- } else {
- const material = await importKey(key);
-
- newKey = await deriveKeys(material);
- }
- }
-
- this._setKeys(newKey, keyIndex);
- }
-
- /**
- * Sets a set of keys and resets the sendCount.
- * decryption.
- * @param {Object} keys set of keys.
- * @param {Number} keyIndex optional
- * @private
- */
- _setKeys(keys, keyIndex = -1) {
- if (keyIndex >= 0) {
- this._currentKeyIndex = keyIndex % this._cryptoKeyRing.length;
- }
-
- this._cryptoKeyRing[this._currentKeyIndex] = keys;
-
- this._sendCount = BigInt(0); // eslint-disable-line new-cap
- }
-
- /**
- * Function that will be injected in a stream and will encrypt the given encoded frames.
- *
- * @param {RTCEncodedVideoFrame|RTCEncodedAudioFrame} encodedFrame - Encoded video frame.
- * @param {TransformStreamDefaultController} controller - TransportStreamController.
- *
- * The VP8 payload descriptor described in
- * https://tools.ietf.org/html/rfc7741#section-4.2
- * is part of the RTP packet and not part of the frame and is not controllable by us.
- * This is fine as the SFU keeps having access to it for routing.
- *
- * The encrypted frame is formed as follows:
- * 1) Leave the first (10, 3, 1) bytes unencrypted, depending on the frame type and kind.
- * 2) Form the GCM IV for the frame as described above.
- * 3) Encrypt the rest of the frame using AES-GCM.
- * 4) Allocate space for the encrypted frame.
- * 5) Copy the unencrypted bytes to the start of the encrypted frame.
- * 6) Append the ciphertext to the encrypted frame.
- * 7) Append the IV.
- * 8) Append a single byte for the key identifier.
- * 9) Enqueue the encrypted frame for sending.
- */
- encodeFunction(encodedFrame, controller) {
- const keyIndex = this._currentKeyIndex;
-
- if (this._cryptoKeyRing[keyIndex]) {
- const iv = this._makeIV(encodedFrame.getMetadata().synchronizationSource, encodedFrame.timestamp);
-
- // Thіs is not encrypted and contains the VP8 payload descriptor or the Opus TOC byte.
- const frameHeader = new Uint8Array(encodedFrame.data, 0, UNENCRYPTED_BYTES[encodedFrame.type]);
-
- // Frame trailer contains the R|IV_LENGTH and key index
- const frameTrailer = new Uint8Array(2);
-
- frameTrailer[0] = IV_LENGTH;
- frameTrailer[1] = keyIndex;
-
- // Construct frame trailer. Similar to the frame header described in
- // https://tools.ietf.org/html/draft-omara-sframe-00#section-4.2
- // but we put it at the end.
- //
- // ---------+-------------------------+-+---------+----
- // payload |IV...(length = IV_LENGTH)|R|IV_LENGTH|KID |
- // ---------+-------------------------+-+---------+----
-
- return crypto.subtle.encrypt({
- name: ENCRYPTION_ALGORITHM,
- iv,
- additionalData: new Uint8Array(encodedFrame.data, 0, frameHeader.byteLength)
- }, this._cryptoKeyRing[keyIndex].encryptionKey, new Uint8Array(encodedFrame.data,
- UNENCRYPTED_BYTES[encodedFrame.type]))
- .then(cipherText => {
- const newData = new ArrayBuffer(frameHeader.byteLength + cipherText.byteLength
- + iv.byteLength + frameTrailer.byteLength);
- const newUint8 = new Uint8Array(newData);
-
- newUint8.set(frameHeader); // copy first bytes.
- newUint8.set(
- new Uint8Array(cipherText), frameHeader.byteLength); // add ciphertext.
- newUint8.set(
- new Uint8Array(iv), frameHeader.byteLength + cipherText.byteLength); // append IV.
- newUint8.set(
- frameTrailer,
- frameHeader.byteLength + cipherText.byteLength + iv.byteLength); // append frame trailer.
-
- encodedFrame.data = newData;
-
- return controller.enqueue(encodedFrame);
- }, e => {
- // TODO: surface this to the app.
- console.error(e);
-
- // We are not enqueuing the frame here on purpose.
- });
- }
-
- /* NOTE WELL:
- * This will send unencrypted data (only protected by DTLS transport encryption) when no key is configured.
- * This is ok for demo purposes but should not be done once this becomes more relied upon.
- */
- controller.enqueue(encodedFrame);
- }
-
- /**
- * Function that will be injected in a stream and will decrypt the given encoded frames.
- *
- * @param {RTCEncodedVideoFrame|RTCEncodedAudioFrame} encodedFrame - Encoded video frame.
- * @param {TransformStreamDefaultController} controller - TransportStreamController.
- */
- async decodeFunction(encodedFrame, controller) {
- const data = new Uint8Array(encodedFrame.data);
- const keyIndex = data[encodedFrame.data.byteLength - 1];
-
- if (this._cryptoKeyRing[keyIndex]) {
-
- const decodedFrame = await this._decryptFrame(
- encodedFrame,
- keyIndex);
-
- return controller.enqueue(decodedFrame);
- }
-
- // TODO: this just passes through to the decoder. Is that ok? If we don't know the key yet
- // we might want to buffer a bit but it is still unclear how to do that (and for how long etc).
- controller.enqueue(encodedFrame);
- }
-
- /**
- * Function that will decrypt the given encoded frame. If the decryption fails, it will
- * ratchet the key for up to RATCHET_WINDOW_SIZE times.
- *
- * @param {RTCEncodedVideoFrame|RTCEncodedAudioFrame} encodedFrame - Encoded video frame.
- * @param {number} keyIndex - the index of the decryption data in _cryptoKeyRing array.
- * @param {number} ratchetCount - the number of retries after ratcheting the key.
- * @returns {RTCEncodedVideoFrame|RTCEncodedAudioFrame} - The decrypted frame.
- * @private
- */
- async _decryptFrame(
- encodedFrame,
- keyIndex,
- initialKey = undefined,
- ratchetCount = 0) {
-
- const { encryptionKey } = this._cryptoKeyRing[keyIndex];
- let { material } = this._cryptoKeyRing[keyIndex];
-
- // Construct frame trailer. Similar to the frame header described in
- // https://tools.ietf.org/html/draft-omara-sframe-00#section-4.2
- // but we put it at the end.
- //
- // ---------+-------------------------+-+---------+----
- // payload |IV...(length = IV_LENGTH)|R|IV_LENGTH|KID |
- // ---------+-------------------------+-+---------+----
-
- try {
- const frameHeader = new Uint8Array(encodedFrame.data, 0, UNENCRYPTED_BYTES[encodedFrame.type]);
- const frameTrailer = new Uint8Array(encodedFrame.data, encodedFrame.data.byteLength - 2, 2);
-
- const ivLength = frameTrailer[0];
- const iv = new Uint8Array(
- encodedFrame.data,
- encodedFrame.data.byteLength - ivLength - frameTrailer.byteLength,
- ivLength);
-
- const cipherTextStart = frameHeader.byteLength;
- const cipherTextLength = encodedFrame.data.byteLength
- - (frameHeader.byteLength + ivLength + frameTrailer.byteLength);
-
- const plainText = await crypto.subtle.decrypt({
- name: 'AES-GCM',
- iv,
- additionalData: new Uint8Array(encodedFrame.data, 0, frameHeader.byteLength)
- },
- encryptionKey,
- new Uint8Array(encodedFrame.data, cipherTextStart, cipherTextLength));
-
- const newData = new ArrayBuffer(frameHeader.byteLength + plainText.byteLength);
- const newUint8 = new Uint8Array(newData);
-
- newUint8.set(new Uint8Array(encodedFrame.data, 0, frameHeader.byteLength));
- newUint8.set(new Uint8Array(plainText), frameHeader.byteLength);
-
- encodedFrame.data = newData;
- } catch (error) {
- if (this._sharedKey) {
- return encodedFrame;
- }
-
- if (ratchetCount < RATCHET_WINDOW_SIZE) {
- material = await importKey(await ratchet(material));
-
- const newKey = await deriveKeys(material);
-
- this._setKeys(newKey);
-
- return await this._decryptFrame(
- encodedFrame,
- keyIndex,
- initialKey || this._cryptoKeyRing[this._currentKeyIndex],
- ratchetCount + 1);
- }
-
- /**
- * Since the key it is first send and only afterwards actually used for encrypting, there were
- * situations when the decrypting failed due to the fact that the received frame was not encrypted
- * yet and ratcheting, of course, did not solve the problem. So if we fail RATCHET_WINDOW_SIZE times,
- * we come back to the initial key.
- */
- this._setKeys(initialKey);
-
- // TODO: notify the application about error status.
- }
-
- return encodedFrame;
- }
-
-
- /**
- * Construct the IV used for AES-GCM and sent (in plain) with the packet similar to
- * https://tools.ietf.org/html/rfc7714#section-8.1
- * It concatenates
- * - the 32 bit synchronization source (SSRC) given on the encoded frame,
- * - the 32 bit rtp timestamp given on the encoded frame,
- * - a send counter that is specific to the SSRC. Starts at a random number.
- * The send counter is essentially the pictureId but we currently have to implement this ourselves.
- * There is no XOR with a salt. Note that this IV leaks the SSRC to the receiver but since this is
- * randomly generated and SFUs may not rewrite this is considered acceptable.
- * The SSRC is used to allow demultiplexing multiple streams with the same key, as described in
- * https://tools.ietf.org/html/rfc3711#section-4.1.1
- * The RTP timestamp is 32 bits and advances by the codec clock rate (90khz for video, 48khz for
- * opus audio) every second. For video it rolls over roughly every 13 hours.
- * The send counter will advance at the frame rate (30fps for video, 50fps for 20ms opus audio)
- * every second. It will take a long time to roll over.
- *
- * See also https://developer.mozilla.org/en-US/docs/Web/API/AesGcmParams
- */
- _makeIV(synchronizationSource, timestamp) {
- const iv = new ArrayBuffer(IV_LENGTH);
- const ivView = new DataView(iv);
-
- // having to keep our own send count (similar to a picture id) is not ideal.
- if (!this._sendCounts.has(synchronizationSource)) {
- // Initialize with a random offset, similar to the RTP sequence number.
- this._sendCounts.set(synchronizationSource, Math.floor(Math.random() * 0xFFFF));
- }
-
- const sendCount = this._sendCounts.get(synchronizationSource);
-
- ivView.setUint32(0, synchronizationSource);
- ivView.setUint32(4, timestamp);
- ivView.setUint32(8, sendCount % 0xFFFF);
-
- this._sendCounts.set(synchronizationSource, sendCount + 1);
-
- return iv;
- }
- }
|