123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890 |
- import { Data, Bounds } from "types"
- import * as svg from "./svg"
- import * as vec from "./vec"
-
- export function screenToWorld(point: number[], data: Data) {
- return vec.sub(vec.div(point, data.camera.zoom), data.camera.point)
- }
-
- /**
- * Get a bounding box that includes two bounding boxes.
- * @param a Bounding box
- * @param b Bounding box
- * @returns
- */
- export function getExpandedBounds(a: Bounds, b: Bounds) {
- const minX = Math.min(a.minX, b.minX),
- minY = Math.min(a.minY, b.minY),
- maxX = Math.max(a.maxX, b.maxX),
- maxY = Math.max(a.maxY, b.maxY),
- width = Math.abs(maxX - minX),
- height = Math.abs(maxY - minY)
-
- return { minX, minY, maxX, maxY, width, height }
- }
-
- /**
- * Get the common bounds of a group of bounds.
- * @returns
- */
- export function getCommonBounds(...b: Bounds[]) {
- if (b.length < 2) return b[0]
-
- let bounds = b[0]
-
- for (let i = 1; i < b.length; i++) {
- bounds = getExpandedBounds(bounds, b[i])
- }
-
- return bounds
- }
-
- export function getBoundsFromPoints(a: number[], b: number[]) {
- const minX = Math.min(a[0], b[0])
- const maxX = Math.max(a[0], b[0])
- const minY = Math.min(a[1], b[1])
- const maxY = Math.max(a[1], b[1])
-
- return {
- minX,
- maxX,
- minY,
- maxY,
- width: maxX - minX,
- height: maxY - minY,
- }
- }
-
- // A helper for getting tangents.
- export function getCircleTangentToPoint(
- A: number[],
- r0: number,
- P: number[],
- side: number
- ) {
- const B = vec.lrp(A, P, 0.5),
- r1 = vec.dist(A, B),
- delta = vec.sub(B, A),
- d = vec.len(delta)
-
- if (!(d <= r0 + r1 && d >= Math.abs(r0 - r1))) {
- return
- }
-
- const a = (r0 * r0 - r1 * r1 + d * d) / (2.0 * d),
- n = 1 / d,
- p = vec.add(A, vec.mul(delta, a * n)),
- h = Math.sqrt(r0 * r0 - a * a),
- k = vec.mul(vec.per(delta), h * n)
-
- return side === 0 ? vec.add(p, k) : vec.sub(p, k)
- }
-
- export function circleCircleIntersections(a: number[], b: number[]) {
- const R = a[2],
- r = b[2]
-
- let dx = b[0] - a[0],
- dy = b[1] - a[1]
-
- const d = Math.sqrt(dx * dx + dy * dy),
- x = (d * d - r * r + R * R) / (2 * d),
- y = Math.sqrt(R * R - x * x)
-
- dx /= d
- dy /= d
-
- return [
- [a[0] + dx * x - dy * y, a[1] + dy * x + dx * y],
- [a[0] + dx * x + dy * y, a[1] + dy * x - dx * y],
- ]
- }
-
- export function getClosestPointOnCircle(
- C: number[],
- r: number,
- P: number[],
- padding = 0
- ) {
- const v = vec.sub(C, P)
- return vec.sub(C, vec.mul(vec.div(v, vec.len(v)), r + padding))
- }
-
- export function projectPoint(p0: number[], a: number, d: number) {
- return [Math.cos(a) * d + p0[0], Math.sin(a) * d + p0[1]]
- }
-
- function shortAngleDist(a0: number, a1: number) {
- const max = Math.PI * 2
- const da = (a1 - a0) % max
- return ((2 * da) % max) - da
- }
-
- export function lerpAngles(a0: number, a1: number, t: number) {
- return a0 + shortAngleDist(a0, a1) * t
- }
-
- export function getBezierCurveSegments(points: number[][], tension = 0.4) {
- const len = points.length,
- cpoints: number[][] = [...points]
-
- if (len < 2) {
- throw Error("Curve must have at least two points.")
- }
-
- for (let i = 1; i < len - 1; i++) {
- const p0 = points[i - 1],
- p1 = points[i],
- p2 = points[i + 1]
-
- const pdx = p2[0] - p0[0],
- pdy = p2[1] - p0[1],
- pd = Math.hypot(pdx, pdy),
- nx = pdx / pd, // normalized x
- ny = pdy / pd, // normalized y
- dp = Math.hypot(p1[0] - p0[0], p1[1] - p0[1]), // Distance to previous
- dn = Math.hypot(p1[0] - p2[0], p1[1] - p2[1]) // Distance to next
-
- cpoints[i] = [
- // tangent start
- p1[0] - nx * dp * tension,
- p1[1] - ny * dp * tension,
- // tangent end
- p1[0] + nx * dn * tension,
- p1[1] + ny * dn * tension,
- // normal
- nx,
- ny,
- ]
- }
-
- // TODO: Reflect the nearest control points, not average them
- const d0 = Math.hypot(points[0][0] + cpoints[1][0])
- cpoints[0][2] = (points[0][0] + cpoints[1][0]) / 2
- cpoints[0][3] = (points[0][1] + cpoints[1][1]) / 2
- cpoints[0][4] = (cpoints[1][0] - points[0][0]) / d0
- cpoints[0][5] = (cpoints[1][1] - points[0][1]) / d0
-
- const d1 = Math.hypot(points[len - 1][1] + cpoints[len - 1][1])
- cpoints[len - 1][0] = (points[len - 1][0] + cpoints[len - 2][2]) / 2
- cpoints[len - 1][1] = (points[len - 1][1] + cpoints[len - 2][3]) / 2
- cpoints[len - 1][4] = (cpoints[len - 2][2] - points[len - 1][0]) / -d1
- cpoints[len - 1][5] = (cpoints[len - 2][3] - points[len - 1][1]) / -d1
-
- const results: {
- start: number[]
- tangentStart: number[]
- normalStart: number[]
- pressureStart: number
- end: number[]
- tangentEnd: number[]
- normalEnd: number[]
- pressureEnd: number
- }[] = []
-
- for (let i = 1; i < cpoints.length; i++) {
- results.push({
- start: points[i - 1].slice(0, 2),
- tangentStart: cpoints[i - 1].slice(2, 4),
- normalStart: cpoints[i - 1].slice(4, 6),
- pressureStart: 2 + ((i - 1) % 2 === 0 ? 1.5 : 0),
- end: points[i].slice(0, 2),
- tangentEnd: cpoints[i].slice(0, 2),
- normalEnd: cpoints[i].slice(4, 6),
- pressureEnd: 2 + (i % 2 === 0 ? 1.5 : 0),
- })
- }
-
- return results
- }
-
- export function cubicBezier(
- tx: number,
- x1: number,
- y1: number,
- x2: number,
- y2: number
- ) {
- // Inspired by Don Lancaster's two articles
- // http://www.tinaja.com/glib/cubemath.pdf
- // http://www.tinaja.com/text/bezmath.html
-
- // Set start and end point
- const x0 = 0,
- y0 = 0,
- x3 = 1,
- y3 = 1,
- // Convert the coordinates to equation space
- A = x3 - 3 * x2 + 3 * x1 - x0,
- B = 3 * x2 - 6 * x1 + 3 * x0,
- C = 3 * x1 - 3 * x0,
- D = x0,
- E = y3 - 3 * y2 + 3 * y1 - y0,
- F = 3 * y2 - 6 * y1 + 3 * y0,
- G = 3 * y1 - 3 * y0,
- H = y0,
- // Variables for the loop below
- iterations = 5
-
- let i: number,
- slope: number,
- x: number,
- t = tx
-
- // Loop through a few times to get a more accurate time value, according to the Newton-Raphson method
- // http://en.wikipedia.org/wiki/Newton's_method
- for (i = 0; i < iterations; i++) {
- // The curve's x equation for the current time value
- x = A * t * t * t + B * t * t + C * t + D
-
- // The slope we want is the inverse of the derivate of x
- slope = 1 / (3 * A * t * t + 2 * B * t + C)
-
- // Get the next estimated time value, which will be more accurate than the one before
- t -= (x - tx) * slope
- t = t > 1 ? 1 : t < 0 ? 0 : t
- }
-
- // Find the y value through the curve's y equation, with the now more accurate time value
- return Math.abs(E * t * t * t + F * t * t + G * t * H)
- }
-
- export function copyToClipboard(string: string) {
- let textarea: HTMLTextAreaElement
- let result: boolean
-
- try {
- navigator.clipboard.writeText(string)
- } catch (e) {
- try {
- textarea = document.createElement("textarea")
- textarea.setAttribute("position", "fixed")
- textarea.setAttribute("top", "0")
- textarea.setAttribute("readonly", "true")
- textarea.setAttribute("contenteditable", "true")
- textarea.style.position = "fixed" // prevent scroll from jumping to the bottom when focus is set.
- textarea.value = string
-
- document.body.appendChild(textarea)
-
- textarea.focus()
- textarea.select()
-
- const range = document.createRange()
- range.selectNodeContents(textarea)
-
- const sel = window.getSelection()
- sel.removeAllRanges()
- sel.addRange(range)
-
- textarea.setSelectionRange(0, textarea.value.length)
- result = document.execCommand("copy")
- } catch (err) {
- result = null
- } finally {
- document.body.removeChild(textarea)
- }
- }
-
- return !!result
- }
-
- /**
- * Get a bezier curve data to for a spline that fits an array of points.
- * @param points An array of points formatted as [x, y]
- * @param k Tension
- * @returns An array of points as [cp1x, cp1y, cp2x, cp2y, px, py].
- */
- export function getSpline(pts: number[][], k = 0.5) {
- let p0: number[],
- [p1, p2, p3] = pts
-
- const results: number[][] = []
-
- for (let i = 1, len = pts.length; i < len; i++) {
- p0 = p1
- p1 = p2
- p2 = p3
- p3 = pts[i + 2] ? pts[i + 2] : p2
- results.push([
- p1[0] + ((p2[0] - p0[0]) / 6) * k,
- p1[1] + ((p2[1] - p0[1]) / 6) * k,
- p2[0] - ((p3[0] - p1[0]) / 6) * k,
- p2[1] - ((p3[1] - p1[1]) / 6) * k,
- pts[i][0],
- pts[i][1],
- ])
- }
-
- return results
- }
-
- export function getCurvePoints(
- pts: number[][],
- tension = 0.5,
- isClosed = false,
- numOfSegments = 3
- ) {
- const _pts = [...pts],
- len = pts.length,
- res: number[][] = [] // results
-
- let t1x: number, // tension vectors
- t2x: number,
- t1y: number,
- t2y: number,
- c1: number, // cardinal points
- c2: number,
- c3: number,
- c4: number,
- st: number,
- st2: number,
- st3: number
-
- // The algorithm require a previous and next point to the actual point array.
- // Check if we will draw closed or open curve.
- // If closed, copy end points to beginning and first points to end
- // If open, duplicate first points to befinning, end points to end
- if (isClosed) {
- _pts.unshift(_pts[len - 1])
- _pts.push(_pts[0])
- } else {
- //copy 1. point and insert at beginning
- _pts.unshift(_pts[0])
- _pts.push(_pts[len - 1])
- // _pts.push(_pts[len - 1])
- }
-
- // For each point, calculate a segment
- for (let i = 1; i < _pts.length - 2; i++) {
- // Calculate points along segment and add to results
- for (let t = 0; t <= numOfSegments; t++) {
- // Step
- st = t / numOfSegments
- st2 = Math.pow(st, 2)
- st3 = Math.pow(st, 3)
-
- // Cardinals
- c1 = 2 * st3 - 3 * st2 + 1
- c2 = -(2 * st3) + 3 * st2
- c3 = st3 - 2 * st2 + st
- c4 = st3 - st2
-
- // Tension
- t1x = (_pts[i + 1][0] - _pts[i - 1][0]) * tension
- t2x = (_pts[i + 2][0] - _pts[i][0]) * tension
- t1y = (_pts[i + 1][1] - _pts[i - 1][1]) * tension
- t2y = (_pts[i + 2][1] - _pts[i][1]) * tension
-
- // Control points
- res.push([
- c1 * _pts[i][0] + c2 * _pts[i + 1][0] + c3 * t1x + c4 * t2x,
- c1 * _pts[i][1] + c2 * _pts[i + 1][1] + c3 * t1y + c4 * t2y,
- ])
- }
- }
-
- res.push(pts[pts.length - 1])
-
- return res
- }
-
- export function angleDelta(a0: number, a1: number) {
- return shortAngleDist(a0, a1)
- }
-
- /**
- * Rotate a point around a center.
- * @param x The x-axis coordinate of the point.
- * @param y The y-axis coordinate of the point.
- * @param cx The x-axis coordinate of the point to rotate round.
- * @param cy The y-axis coordinate of the point to rotate round.
- * @param angle The distance (in radians) to rotate.
- */
- export function rotatePoint(A: number[], B: number[], angle: number) {
- const s = Math.sin(angle)
- const c = Math.cos(angle)
-
- const px = A[0] - B[0]
- const py = A[1] - B[1]
-
- const nx = px * c - py * s
- const ny = px * s + py * c
-
- return [nx + B[0], ny + B[1]]
- }
-
- export function degreesToRadians(d: number) {
- return (d * Math.PI) / 180
- }
-
- export function radiansToDegrees(r: number) {
- return (r * 180) / Math.PI
- }
-
- export function getArcLength(C: number[], r: number, A: number[], B: number[]) {
- const sweep = getSweep(C, A, B)
- return r * (2 * Math.PI) * (sweep / (2 * Math.PI))
- }
-
- export function getArcDashOffset(
- C: number[],
- r: number,
- A: number[],
- B: number[],
- step: number
- ) {
- const del0 = getSweep(C, A, B)
- const len0 = getArcLength(C, r, A, B)
- const off0 = del0 < 0 ? len0 : 2 * Math.PI * C[2] - len0
- return -off0 / 2 + step
- }
-
- export function getEllipseDashOffset(A: number[], step: number) {
- const c = 2 * Math.PI * A[2]
- return -c / 2 + -step
- }
-
- export function getSweep(C: number[], A: number[], B: number[]) {
- return angleDelta(vec.angle(C, A), vec.angle(C, B))
- }
-
- export function deepCompareArrays<T>(a: T[], b: T[]) {
- if (a?.length !== b?.length) return false
- return deepCompare(a, b)
- }
-
- export function deepCompare<T>(a: T, b: T) {
- return a === b || JSON.stringify(a) === JSON.stringify(b)
- }
-
- /**
- * Get outer tangents of two circles.
- * @param x0
- * @param y0
- * @param r0
- * @param x1
- * @param y1
- * @param r1
- * @returns [lx0, ly0, lx1, ly1, rx0, ry0, rx1, ry1]
- */
- export function getOuterTangents(
- C0: number[],
- r0: number,
- C1: number[],
- r1: number
- ) {
- const a0 = vec.angle(C0, C1)
- const d = vec.dist(C0, C1)
-
- // Circles are overlapping, no tangents
- if (d < Math.abs(r1 - r0)) return
-
- const a1 = Math.acos((r0 - r1) / d),
- t0 = a0 + a1,
- t1 = a0 - a1
-
- return [
- [C0[0] + r0 * Math.cos(t1), C0[1] + r0 * Math.sin(t1)],
- [C1[0] + r1 * Math.cos(t1), C1[1] + r1 * Math.sin(t1)],
- [C0[0] + r0 * Math.cos(t0), C0[1] + r0 * Math.sin(t0)],
- [C1[0] + r1 * Math.cos(t0), C1[1] + r1 * Math.sin(t0)],
- ]
- }
-
- export function arrsIntersect<T, K>(
- a: T[],
- b: K[],
- fn?: (item: K) => T
- ): boolean
- export function arrsIntersect<T>(a: T[], b: T[]): boolean
- export function arrsIntersect<T>(
- a: T[],
- b: unknown[],
- fn?: (item: unknown) => T
- ) {
- return a.some((item) => b.includes(fn ? fn(item) : item))
- }
-
- // /**
- // * Will mutate an array to remove items.
- // * @param arr
- // * @param item
- // */
- // export function pull<T>(arr: T[], ...items: T[]) {
- // for (let item of items) {
- // arr.splice(arr.indexOf(item), 1)
- // }
- // return arr
- // }
-
- // /**
- // * Will mutate an array to remove items, based on a function
- // * @param arr
- // * @param fn
- // * @returns
- // */
- // export function pullWith<T>(arr: T[], fn: (item: T) => boolean) {
- // pull(arr, ...arr.filter((item) => fn(item)))
- // return arr
- // }
-
- // export function rectContainsRect(
- // x0: number,
- // y0: number,
- // x1: number,
- // y1: number,
- // box: { x: number; y: number; width: number; height: number }
- // ) {
- // return !(
- // x0 > box.x ||
- // x1 < box.x + box.width ||
- // y0 > box.y ||
- // y1 < box.y + box.height
- // )
- // }
-
- export function getTouchDisplay() {
- return (
- "ontouchstart" in window ||
- navigator.maxTouchPoints > 0 ||
- navigator.msMaxTouchPoints > 0
- )
- }
-
- const rounds = [1, 10, 100, 1000]
-
- export function round(n: number, p = 2) {
- return Math.floor(n * rounds[p]) / rounds[p]
- }
-
- /**
- * Linear interpolation betwen two numbers.
- * @param y1
- * @param y2
- * @param mu
- */
- export function lerp(y1: number, y2: number, mu: number) {
- mu = clamp(mu, 0, 1)
- return y1 * (1 - mu) + y2 * mu
- }
-
- /**
- * Modulate a value between two ranges.
- * @param value
- * @param rangeA from [low, high]
- * @param rangeB to [low, high]
- * @param clamp
- */
- export function modulate(
- value: number,
- rangeA: number[],
- rangeB: number[],
- clamp = false
- ) {
- const [fromLow, fromHigh] = rangeA
- const [v0, v1] = rangeB
- const result = v0 + ((value - fromLow) / (fromHigh - fromLow)) * (v1 - v0)
-
- return clamp
- ? v0 < v1
- ? Math.max(Math.min(result, v1), v0)
- : Math.max(Math.min(result, v0), v1)
- : result
- }
-
- /**
- * Clamp a value into a range.
- * @param n
- * @param min
- */
- export function clamp(n: number, min: number): number
- export function clamp(n: number, min: number, max: number): number
- export function clamp(n: number, min: number, max?: number): number {
- return Math.max(min, typeof max !== "undefined" ? Math.min(n, max) : n)
- }
-
- // CURVES
- // Mostly adapted from https://github.com/Pomax/bezierjs
-
- export function computePointOnCurve(t: number, points: number[][]) {
- // shortcuts
- if (t === 0) {
- return points[0]
- }
-
- const order = points.length - 1
-
- if (t === 1) {
- return points[order]
- }
-
- const mt = 1 - t
- let p = points // constant?
-
- if (order === 0) {
- return points[0]
- } // linear?
-
- if (order === 1) {
- return [mt * p[0][0] + t * p[1][0], mt * p[0][1] + t * p[1][1]]
- } // quadratic/cubic curve?
-
- if (order < 4) {
- const mt2 = mt * mt,
- t2 = t * t
-
- let a: number,
- b: number,
- c: number,
- d = 0
-
- if (order === 2) {
- p = [p[0], p[1], p[2], [0, 0]]
- a = mt2
- b = mt * t * 2
- c = t2
- } else if (order === 3) {
- a = mt2 * mt
- b = mt2 * t * 3
- c = mt * t2 * 3
- d = t * t2
- }
-
- return [
- a * p[0][0] + b * p[1][0] + c * p[2][0] + d * p[3][0],
- a * p[0][1] + b * p[1][1] + c * p[2][1] + d * p[3][1],
- ]
- } // higher order curves: use de Casteljau's computation
- }
-
- function distance2(p: DOMPoint, point: number[]) {
- const dx = p.x - point[0],
- dy = p.y - point[1]
- return dx * dx + dy * dy
- }
-
- /**
- * Find the closest point on a path to an off-path point.
- * @param pathNode
- * @param point
- * @returns
- */
- export function getClosestPointOnPath(
- pathNode: SVGPathElement,
- point: number[]
- ) {
- const pathLen = pathNode.getTotalLength()
-
- let p = 8,
- best: DOMPoint,
- bestLen: number,
- bestDist = Infinity,
- bl: number,
- al: number
-
- // linear scan for coarse approximation
- for (
- let scan: DOMPoint, scanLen = 0, scanDist: number;
- scanLen <= pathLen;
- scanLen += p
- ) {
- if (
- (scanDist = distance2(
- (scan = pathNode.getPointAtLength(scanLen)),
- point
- )) < bestDist
- ) {
- ;(best = scan), (bestLen = scanLen), (bestDist = scanDist)
- }
- }
-
- // binary search for precise estimate
- p /= 2
- while (p > 0.5) {
- let before: DOMPoint, after: DOMPoint, bd: number, ad: number
- if (
- (bl = bestLen - p) >= 0 &&
- (bd = distance2((before = pathNode.getPointAtLength(bl)), point)) <
- bestDist
- ) {
- ;(best = before), (bestLen = bl), (bestDist = bd)
- } else if (
- (al = bestLen + p) <= pathLen &&
- (ad = distance2((after = pathNode.getPointAtLength(al)), point)) <
- bestDist
- ) {
- ;(best = after), (bestLen = al), (bestDist = ad)
- } else {
- p /= 2
- }
- }
-
- return {
- point: [best.x, best.y],
- distance: bestDist,
- length: (bl + al) / 2,
- t: (bl + al) / 2 / pathLen,
- }
- }
-
- export function det(
- a: number,
- b: number,
- c: number,
- d: number,
- e: number,
- f: number,
- g: number,
- h: number,
- i: number
- ) {
- return a * e * i + b * f * g + c * d * h - a * f * h - b * d * i - c * e * g
- }
-
- /**
- * Get a circle from three points.
- * @param p0
- * @param p1
- * @param center
- * @returns
- */
- export function circleFromThreePoints(A: number[], B: number[], C: number[]) {
- const a = det(A[0], A[1], 1, B[0], B[1], 1, C[0], C[1], 1)
-
- const bx = -det(
- A[0] * A[0] + A[1] * A[1],
- A[1],
- 1,
- B[0] * B[0] + B[1] * B[1],
- B[1],
- 1,
- C[0] * C[0] + C[1] * C[1],
- C[1],
- 1
- )
- const by = det(
- A[0] * A[0] + A[1] * A[1],
- A[0],
- 1,
- B[0] * B[0] + B[1] * B[1],
- B[0],
- 1,
- C[0] * C[0] + C[1] * C[1],
- C[0],
- 1
- )
- const c = -det(
- A[0] * A[0] + A[1] * A[1],
- A[0],
- A[1],
- B[0] * B[0] + B[1] * B[1],
- B[0],
- B[1],
- C[0] * C[0] + C[1] * C[1],
- C[0],
- C[1]
- )
- return [
- -bx / (2 * a),
- -by / (2 * a),
- Math.sqrt(bx * bx + by * by - 4 * a * c) / (2 * Math.abs(a)),
- ]
- }
-
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
- export function throttle<P extends any[], T extends (...args: P) => any>(
- fn: T,
- wait: number,
- preventDefault?: boolean
- ) {
- // eslint-disable-next-line @typescript-eslint/no-explicit-any
- let inThrottle: boolean, lastFn: any, lastTime: number
- return function(...args: P) {
- if (preventDefault) args[0].preventDefault()
- // eslint-disable-next-line @typescript-eslint/no-this-alias
- const context = this
- if (!inThrottle) {
- fn.apply(context, args)
- lastTime = Date.now()
- inThrottle = true
- } else {
- clearTimeout(lastFn)
- lastFn = setTimeout(function() {
- if (Date.now() - lastTime >= wait) {
- fn.apply(context, args)
- lastTime = Date.now()
- }
- }, Math.max(wait - (Date.now() - lastTime), 0))
- }
- }
- }
-
- export function pointInRect(
- point: number[],
- minX: number,
- minY: number,
- maxX: number,
- maxY: number
- ) {
- return !(
- point[0] < minX ||
- point[0] > maxX ||
- point[1] < minY ||
- point[1] > maxY
- )
- }
-
- /**
- * Get the intersection of two rays, with origin points p0 and p1, and direction vectors n0 and n1.
- * @param p0 The origin point of the first ray
- * @param n0 The direction vector of the first ray
- * @param p1 The origin point of the second ray
- * @param n1 The direction vector of the second ray
- * @returns
- */
- export function getRayRayIntersection(
- p0: number[],
- n0: number[],
- p1: number[],
- n1: number[]
- ) {
- const p0e = vec.add(p0, n0),
- p1e = vec.add(p1, n1),
- m0 = (p0e[1] - p0[1]) / (p0e[0] - p0[0]),
- m1 = (p1e[1] - p1[1]) / (p1e[0] - p1[0]),
- b0 = p0[1] - m0 * p0[0],
- b1 = p1[1] - m1 * p1[0],
- x = (b1 - b0) / (m0 - m1),
- y = m0 * x + b0
-
- return [x, y]
- }
-
- export async function postJsonToEndpoint(
- endpoint: string,
- data: { [key: string]: unknown }
- ) {
- const d = await fetch(
- `${process.env.NEXT_PUBLIC_BASE_API_URL}/api/${endpoint}`,
- {
- method: "POST",
- headers: { "Content-Type": "application/json" },
- body: JSON.stringify(data),
- }
- )
-
- return await d.json()
- }
-
- export function getPointerEventInfo(
- e: PointerEvent | React.PointerEvent | WheelEvent
- ) {
- const { shiftKey, ctrlKey, metaKey, altKey } = e
- return { point: [e.clientX, e.clientY], shiftKey, ctrlKey, metaKey, altKey }
- }
-
- export function getKeyboardEventInfo(e: KeyboardEvent | React.KeyboardEvent) {
- const { shiftKey, ctrlKey, metaKey, altKey } = e
- return { key: e.key, shiftKey, ctrlKey, metaKey, altKey }
- }
|