| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493 |
- // A big collection of vector utilities. Collected into a class to improve logging / packaging.
-
- export default class Vec {
- /**
- * Clamp a value into a range.
- * @param n
- * @param min
- */
- static clamp(n: number, min: number): number
- static clamp(n: number, min: number, max: number): number
- static clamp(n: number, min: number, max?: number): number {
- return Math.max(min, typeof max !== 'undefined' ? Math.min(n, max) : n)
- }
-
- /**
- * Negate a vector.
- * @param A
- */
- static neg = (A: number[]): number[] => {
- return [-A[0], -A[1]]
- }
-
- /**
- * Add vectors.
- * @param A
- * @param B
- */
- static add = (A: number[], B: number[]): number[] => {
- return [A[0] + B[0], A[1] + B[1]]
- }
-
- /**
- * Add scalar to vector.
- * @param A
- * @param B
- */
- static addScalar = (A: number[], n: number): number[] => {
- return [A[0] + n, A[1] + n]
- }
-
- /**
- * Subtract vectors.
- * @param A
- * @param B
- */
- static sub = (A: number[], B: number[]): number[] => {
- return [A[0] - B[0], A[1] - B[1]]
- }
-
- /**
- * Subtract scalar from vector.
- * @param A
- * @param B
- */
- static subScalar = (A: number[], n: number): number[] => {
- return [A[0] - n, A[1] - n]
- }
-
- /**
- * Get the vector from vectors A to B.
- * @param A
- * @param B
- */
- static vec = (A: number[], B: number[]): number[] => {
- // A, B as vectors get the vector from A to B
- return [B[0] - A[0], B[1] - A[1]]
- }
-
- /**
- * Vector multiplication by scalar
- * @param A
- * @param n
- */
- static mul = (A: number[], n: number): number[] => {
- return [A[0] * n, A[1] * n]
- }
-
- static mulV = (A: number[], B: number[]): number[] => {
- return [A[0] * B[0], A[1] * B[1]]
- }
-
- /**
- * Vector division by scalar.
- * @param A
- * @param n
- */
- static div = (A: number[], n: number): number[] => {
- return [A[0] / n, A[1] / n]
- }
-
- /**
- * Vector division by vector.
- * @param A
- * @param n
- */
- static divV = (A: number[], B: number[]): number[] => {
- return [A[0] / B[0], A[1] / B[1]]
- }
-
- /**
- * Perpendicular rotation of a vector A
- * @param A
- */
- static per = (A: number[]): number[] => {
- return [A[1], -A[0]]
- }
-
- /**
- * Dot product
- * @param A
- * @param B
- */
- static dpr = (A: number[], B: number[]): number => {
- return A[0] * B[0] + A[1] * B[1]
- }
-
- /**
- * Cross product (outer product) | A X B |
- * @param A
- * @param B
- */
- static cpr = (A: number[], B: number[]): number => {
- return A[0] * B[1] - B[0] * A[1]
- }
-
- /**
- * Length of the vector squared
- * @param A
- */
- static len2 = (A: number[]): number => {
- return A[0] * A[0] + A[1] * A[1]
- }
-
- /**
- * Length of the vector
- * @param A
- */
- static len = (A: number[]): number => {
- return Math.hypot(A[0], A[1])
- }
-
- /**
- * Project A over B
- * @param A
- * @param B
- */
- static pry = (A: number[], B: number[]): number => {
- return Vec.dpr(A, B) / Vec.len(B)
- }
-
- /**
- * Get normalized / unit vector.
- * @param A
- */
- static uni = (A: number[]): number[] => {
- return Vec.div(A, Vec.len(A))
- }
-
- /**
- * Get normalized / unit vector.
- * @param A
- */
- static normalize = (A: number[]): number[] => {
- return Vec.uni(A)
- }
-
- /**
- * Get the tangent between two vectors.
- * @param A
- * @param B
- * @returns
- */
- static tangent = (A: number[], B: number[]): number[] => {
- return Vec.normalize(Vec.sub(A, B))
- }
-
- /**
- * Dist length from A to B squared.
- * @param A
- * @param B
- */
- static dist2 = (A: number[], B: number[]): number => {
- return Vec.len2(Vec.sub(A, B))
- }
-
- /**
- * Dist length from A to B
- * @param A
- * @param B
- */
- static dist = (A: number[], B: number[]): number => {
- return Math.hypot(A[1] - B[1], A[0] - B[0])
- }
-
- /**
- * A faster, though less accurate method for testing distances. Maybe faster?
- * @param A
- * @param B
- * @returns
- */
- static fastDist = (A: number[], B: number[]): number[] => {
- const V = [B[0] - A[0], B[1] - A[1]]
- const aV = [Math.abs(V[0]), Math.abs(V[1])]
- let r = 1 / Math.max(aV[0], aV[1])
- r = r * (1.29289 - (aV[0] + aV[1]) * r * 0.29289)
- return [V[0] * r, V[1] * r]
- }
-
- /**
- * Angle between vector A and vector B in radians
- * @param A
- * @param B
- */
- static ang = (A: number[], B: number[]): number => {
- return Math.atan2(Vec.cpr(A, B), Vec.dpr(A, B))
- }
-
- /**
- * Angle between vector A and vector B in radians
- * @param A
- * @param B
- */
- static angle = (A: number[], B: number[]): number => {
- return Math.atan2(B[1] - A[1], B[0] - A[0])
- }
-
- /**
- * Mean between two vectors or mid vector between two vectors
- * @param A
- * @param B
- */
- static med = (A: number[], B: number[]): number[] => {
- return Vec.mul(Vec.add(A, B), 0.5)
- }
-
- /**
- * Vector rotation by r (radians)
- * @param A
- * @param r rotation in radians
- */
- static rot = (A: number[], r: number): number[] => {
- return [
- A[0] * Math.cos(r) - A[1] * Math.sin(r),
- A[0] * Math.sin(r) + A[1] * Math.cos(r),
- ]
- }
-
- /**
- * Rotate a vector around another vector by r (radians)
- * @param A vector
- * @param C center
- * @param r rotation in radians
- */
- static rotWith = (A: number[], C: number[], r: number): number[] => {
- if (r === 0) return A
-
- const s = Math.sin(r)
- const c = Math.cos(r)
-
- const px = A[0] - C[0]
- const py = A[1] - C[1]
-
- const nx = px * c - py * s
- const ny = px * s + py * c
-
- return [nx + C[0], ny + C[1]]
- }
-
- /**
- * Check of two vectors are identical.
- * @param A
- * @param B
- */
- static isEqual = (A: number[], B: number[]): boolean => {
- return A[0] === B[0] && A[1] === B[1]
- }
-
- /**
- * Interpolate vector A to B with a scalar t
- * @param A
- * @param B
- * @param t scalar
- */
- static lrp = (A: number[], B: number[], t: number): number[] => {
- return Vec.add(A, Vec.mul(Vec.vec(A, B), t))
- }
-
- /**
- * Interpolate from A to B when curVAL goes fromVAL: number[] => to
- * @param A
- * @param B
- * @param from Starting value
- * @param to Ending value
- * @param s Strength
- */
- static int = (
- A: number[],
- B: number[],
- from: number,
- to: number,
- s = 1
- ): number[] => {
- const t = (Vec.clamp(from, to) - from) / (to - from)
- return Vec.add(Vec.mul(A, 1 - t), Vec.mul(B, s))
- }
-
- /**
- * Get the angle between the three vectors A, B, and C.
- * @param p1
- * @param pc
- * @param p2
- */
- static ang3 = (p1: number[], pc: number[], p2: number[]): number => {
- // this,
- const v1 = Vec.vec(pc, p1)
- const v2 = Vec.vec(pc, p2)
- return Vec.ang(v1, v2)
- }
-
- /**
- * Absolute value of a vector.
- * @param A
- * @returns
- */
- static abs = (A: number[]): number[] => {
- return [Math.abs(A[0]), Math.abs(A[1])]
- }
-
- static rescale = (a: number[], n: number): number[] => {
- const l = Vec.len(a)
- return [(n * a[0]) / l, (n * a[1]) / l]
- }
-
- /**
- * Get whether p1 is left of p2, relative to pc.
- * @param p1
- * @param pc
- * @param p2
- */
- static isLeft = (p1: number[], pc: number[], p2: number[]): number => {
- // isLeft: >0 for counterclockwise
- // =0 for none (degenerate)
- // <0 for clockwise
- return (pc[0] - p1[0]) * (p2[1] - p1[1]) - (p2[0] - p1[0]) * (pc[1] - p1[1])
- }
-
- static clockwise = (p1: number[], pc: number[], p2: number[]): boolean => {
- return Vec.isLeft(p1, pc, p2) > 0
- }
-
- static round = (a: number[], d = 5): number[] => {
- return a.map((v) => Number(v.toPrecision(d)))
- }
-
- /**
- * Get the minimum distance from a point P to a line with a segment AB.
- * @param A The start of the line.
- * @param B The end of the line.
- * @param P A point.
- * @returns
- */
- // static distanceToLine(A: number[], B: number[], P: number[]) {
- // const delta = sub(B, A)
- // const angle = Math.atan2(delta[1], delta[0])
- // const dir = rot(sub(P, A), -angle)
- // return dir[1]
- // }
-
- /**
- * Get the nearest point on a line segment AB.
- * @param A The start of the line.
- * @param B The end of the line.
- * @param P A point.
- * @param clamp Whether to clamp the resulting point to the segment.
- * @returns
- */
- // static nearestPointOnLine(
- // A: number[],
- // B: number[],
- // P: number[],
- // clamp = true
- // ) {
- // const delta = sub(B, A)
- // const length = len(delta)
- // const angle = Math.atan2(delta[1], delta[0])
- // const dir = rot(sub(P, A), -angle)
-
- // if (clamp) {
- // if (dir[0] < 0) return A
- // if (dir[0] > length) return B
- // }
-
- // return add(A, div(mul(delta, dir[0]), length))
- // }
-
- /**
- * Get the nearest point on a line with a known unit vector that passes through point A
- * @param A Any point on the line
- * @param u The unit vector for the line.
- * @param P A point not on the line to test.
- * @returns
- */
- static nearestPointOnLineThroughPoint = (
- A: number[],
- u: number[],
- P: number[]
- ): number[] => {
- return Vec.add(A, Vec.mul(u, Vec.pry(Vec.sub(P, A), u)))
- }
-
- /**
- * Distance between a point and a line with a known unit vector that passes through a point.
- * @param A Any point on the line
- * @param u The unit vector for the line.
- * @param P A point not on the line to test.
- * @returns
- */
- static distanceToLineThroughPoint = (
- A: number[],
- u: number[],
- P: number[]
- ): number => {
- return Vec.dist(P, Vec.nearestPointOnLineThroughPoint(A, u, P))
- }
-
- /**
- * Get the nearest point on a line segment between A and B
- * @param A The start of the line segment
- * @param B The end of the line segment
- * @param P The off-line point
- * @param clamp Whether to clamp the point between A and B.
- * @returns
- */
- static nearestPointOnLineSegment = (
- A: number[],
- B: number[],
- P: number[],
- clamp = true
- ): number[] => {
- const delta = Vec.sub(B, A)
- const length = Vec.len(delta)
- const u = Vec.div(delta, length)
-
- const pt = Vec.add(A, Vec.mul(u, Vec.pry(Vec.sub(P, A), u)))
-
- if (clamp) {
- const da = Vec.dist(A, pt)
- const db = Vec.dist(B, pt)
-
- if (db < da && da > length) return B
- if (da < db && db > length) return A
- }
-
- return pt
- }
-
- /**
- * Distance between a point and the nearest point on a line segment between A and B
- * @param A The start of the line segment
- * @param B The end of the line segment
- * @param P The off-line point
- * @param clamp Whether to clamp the point between A and B.
- * @returns
- */
- static distanceToLineSegment = (
- A: number[],
- B: number[],
- P: number[],
- clamp = true
- ): number => {
- return Vec.dist(P, Vec.nearestPointOnLineSegment(A, B, P, clamp))
- }
-
- /**
- * Get a vector d distance from A towards B.
- * @param A
- * @param B
- * @param d
- * @returns
- */
- static nudge = (A: number[], B: number[], d: number): number[] => {
- return Vec.add(A, Vec.mul(Vec.uni(Vec.vec(A, B)), d))
- }
-
- /**
- * Round a vector to a precision length.
- * @param a
- * @param n
- */
- static toPrecision = (a: number[], n = 4): number[] => {
- return [+a[0].toPrecision(n), +a[1].toPrecision(n)]
- }
- }
|